Sunday, December 11, 2011

Untitled Space Abstract -Supernova Series I

Untitled Space Abstract -Supernova Series I
Size: 60x90 cms,
Medium: Acrylics on canvas,
Year of Creation: 2011.
C P B Prasad, Artist, -Thanks.

I thought you all might like my new series of paintings, Paint flying out of the canvas.

Supernovae are extremely luminous and cause a burst of radiation that often briefly outshines an entire galaxy, before fading from view over several weeks or months. During this short interval a supernova can radiate as much energy as the Sun is expected to emit over its entire life span. The explosion expels much or all of a star's material at a velocity of up to 30,000 km/s (10% of the speed of light), driving a shock wave into the surrounding interstellar medium. This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant.

Role in stellar evolution

The remnant of a supernova explosion consists of a compact object and a rapidly expanding shock wave of material. This cloud of material sweeps up the surrounding interstellar medium during a free expansion phase, which can last for up to two centuries. The wave then gradually undergoes a period of adiabatic expansion, and will slowly cool and mix with the surrounding interstellar medium over a period of about 10,000 years.[99]

The Big Bang produced hydrogen, helium, and traces of lithium, while all heavier elements are synthesized in stars and supernovae. Supernovae tend to enrich the surrounding interstellar medium with metals—elements other than hydrogen and helium.

These injected elements ultimately enrich the molecular clouds that are the sites of star formation. Thus, each stellar generation has a slightly different composition, going from an almost pure mixture of hydrogen and helium to a more metal-rich composition. Supernovae are the dominant mechanism for distributing these heavier elements, which are formed in a star during its period of nuclear fusion, throughout space. The different abundances of elements in the material that forms a star have important influences on the star's life, and may decisively influence the possibility of having planets orbiting it.

The kinetic energy of an expanding supernova remnant can trigger star formation due to compression of nearby, dense molecular clouds in space.[101] The increase in turbulent pressure can also prevent star formation if the cloud is unable to lose the excess energy.

Evidence from daughter products of short-lived radioactive isotopes shows that a nearby supernova helped determine the composition of the Solar System 4.5 billion years ago, and may even have triggered the formation of this system. Supernova production of heavy elements over astronomic periods of time ultimately made the chemistry of life on Earth possible.
http://www.meylah.com/prasad

No comments: